In ambito sportivo, le terapie manuali sono ampiamente utilizzate per prevenire gli infortuni, migliorare sintomi come dolore muscolare post-traumatico e rigidità miofasciale e supportare la riabilitazione muscolo-scheletrica. [1-4]

Tuttavia, restano poco chiari gli effetti biochimici e meccanici che queste terapie possono avere sulle cellule, le quali, costantemente, subiscono stimoli endogeni (come le pressioni indotte dall’onda sfigmica cardiaca sulle cellule endoteliali dei vasi sanguigni, o gli stimoli a cui sono esposte le cellule endoteliali alveolari durante l'espansione dei tessuti causata dalla meccanica respiratoria) ed esogeni (come il contatto manuale tra il terapeuta e il tessuto trattato, o l'immobilizzazione in caso di lesioni). [5-8]

Alle suddette stimolazioni meccaniche fanno seguito complesse reazioni  intra- ed extra-cellulari, il cui fine ultimo è quello di fornire una risposta organica coerente. [5-8]

Negli ultimi decenni, questi fenomeni hanno ricevuto grande attenzione, determinando la nascita della "meccanobiologia", ramo emergente della scienza che ha definito il processo di conversione degli stimoli meccanici in risposte biochimiche "meccanotrasduzione". [9]

Infatti, così come il sistema muscolo-scheletrico garantisce il movimento, così le cellule, per mezzo delle adesioni focali, connettono il loro citoscheletro alla matrice extra-cellulare (MEC), integrando costantemente le forze meccaniche e i segnali regolatori da essa provenienti. [10]

Di conseguenza, la macroscopica mobilità meccanica, caratterizzante la locomozione, si completa grazie alla microscopica motilità cellulare, garantendo a tutti gli organismi viventi, dai microbi all'uomo, la capacità di svilupparsi e sopravvivere, modificando attivamente e in modo reversibile la propria posizione o quella di una loro parte rispetto all'ambiente. [11-12]

La capacità di percepire gli stimoli meccanici e di rispondere ad essi è fondamentale per il mantenimento e la crescita del tessuto muscolare, impattando processi biologici come la sintesi proteica, il metabolismo e l’ipertrofia. [13-16]

In particolare, le cellule muscolari cambiano la loro forma in base allo stimolo meccanico ricevuto, attivando diverse vie di segnalazione meccanotrasduttive utili ad eseguire il pattern di risposte più appropriato a livello biochimico. [16-21]

Le dinamiche metaboliche intercellulari e la meccanotrasduzione possono essere alterate dalla deposizione anomala di MEC, caratterizzata o  dalla sovraproduzione di alcune delle sue componenti, come nei fenomeni fibrotici (collagene di tipo I e III), [22] o da una alterata qualità degli stessi, come avviene nei processi di densificazione (cellule adipose, glicosamminoglicani e acido ialuronico). [23]

I suddetti cambiamenti influenzano i mitocondri, organelli cellulari deputati alla produzione di energia (ATP | adenosin-tri-fosfato), i cui canali ionici sono strutture meccanosensibili, capaci di aprirsi o chiudersi, alterando il metabolismo cellulare e, conseguentemente, la prestazione atletica. [24-27]

Tra questi, i canali anionici tensione-dipendenti (VDAC) consentono il flusso di ATP, adenosina di-fosfato (ADP), piruvato, malato e altre molecole fondamentali per il metabolismo energetico, [28] determinando anche il potenziale mitocondriale di membrana, influenzandone pesantemente la funzione. [29]

La recente scoperta del legame tra i mitocondri e il reticolo endoplasmatico (serbatoio primario di ioni Calcio, fondamentali per la contrazione muscolare), distanti solo pochi nanometri tra loro e comunicanti tramite siti di contatto chiamati membrane RE associate ai mitocondri (MAM), [30-31] sottolinea ancor più l’impatto metabolico della meccanotrasduzione nella prestazione atletica.

In ambito osteopatico, l’alterata o compromessa funzione delle componenti somatiche (con i relativi elementi vascolari, linfatici e neurali) prende il nome di disfunzione somatica (DS), [32] la cui esistenza clinica è giustificata dalla presenza di una barriera di restrizione, che ostacola il movimento [33] o inficia la motilità energetica tissutale. [34]

Tale barriera limita la trasmissione del movimento, la cui matrice connettivale è stata mostrata tra:

  1. grande dorsale e grande gluteo controlaterale attraverso la fascia lombo-dorsale; [35]
  2. bicipite femorale e erettore spinale attraverso il legamento sacro-tuberoso; [36]
  3. bicipite brachiale e muscoli flessori della parte inferiore del braccio attraverso il lacerto fibroso; [37]
  4. grande gluteo e muscoli della parte inferiore della gamba attraverso il tensore della fascia lata. [38]

La letteratura scientifica suffraga le ipotesi secondo le quali il trattamento manipolativo osteopatico (TMO), attraverso la risoluzione della DS, può, in sintesi:



BIBLIOGRAFIA

  [1]   P. Hoogvliet, Manon S. Randsdorp, R. Dingemanse, Bart W. Koes, Bionka M. A. Huisstede (2013). Does Effectiveness of Exercise Therapy and Mobilisation Techniques Offer Guidance for the Treatment of Lateral and Medial Epicondylitis? Br J Sports Med.; 47(17):1112-9. | doi: 10.1136/bjsports-2012-091990.
  [2]   A. Desjardins-Charbonneau, Jean-Sébastien Roy, Clermont E. Dionne, P. Frémont, Joy C. MacDermid, F. Desmeules (2015). The Efficacy of Manual Therapy for Rotator Cuff Tendinopathy: A Systematic Review and Meta-Analysis. J Orthop Sports Phys Ther.; 45(5):330-50. | doi: 10.2519/jospt.2015.5455.
  [3]   C. Doherty, C. Bleakley, E. Delahunt, S. Holden (2017). Treatment and Prevention of Acute and Recurrent Ankle Sprain: An Overview of Systematic Reviews with Meta-Analysis. Br J Sports Med.; 51(2):113-125. | doi: 10.1136/bjsports-2016-096178.
  [4]   J. Guo, L. Li, Y. Gong, R. Zhu, J. Xu, J. Zou, X. Chen (2017). Massage Alleviates Delayed Onset Muscle Soreness after Strenuous Exercise: A Systematic Review and Meta-Analysis. Front Physiol.; 8:747. | doi: 10.3389/fphys.2017.00747.
  [5]   Justin D. Crane, Daniel I. Ogborn, C. Cupido, S. Melov, A. Hubbard, Jacqueline M. Bourgeois, Mark A. Tarnopolsky (2012). Massage Therapy Attenuates Inflammatory Signaling after Exercise-Induced Muscle Damage. Sci Transl Med.; 4(119):119ra13. | doi: 10.1126/scitranslmed.3002882.
  [6]   Amanda K. Huber, N. Patel, Chase A. Pagani, S. Marini, Karthik R. Padmanabhan, Daniel L. Matera, M. Said, C. Hwang et al. (2020). Immobilization after Injury Alters Extracellular Matrix and Stem Cell Fate. J Clin Invest.; 130(10):5444-5460. | doi: 10.1172/JCI136142.
  [7]   Paul A. Janmey, Rebecca G. Wells, Richard K. Assoian, Christopher A. McCulloch (2013). From Tissue Mechanics to Transcription Factors. Differentiation.; 86(3):112-20. | doi: 10.1016/j.diff.2013.07.004.
    [8]   Y. Song, J. Soto, B. Chen, L. Yang, S. Li (2020). Cell Engineering: Biophysical Regulation of the Nucleus. Biomaterials.; 234:119743. | doi: 10.1016/j.biomaterials.2019.119743.
    [9]   Christopher R. Jacobs, H. Huang, Ronald Y. Kwon (2013). Introduction to Cell Mechanics and Mechanobiology; Garland Science: New York, NY, USA, ISBN 978-0-8153-4425-4.
  [10]   Donald E. Ingber (2008). Tensegrity-Based mechanosensing from macro to micro. Prog Biophys Mol Biol.; 97(2-3):163-79. | doi: 10.1016/j.pbiomolbio.2008.02.005.
  [11]   Donald E. Ingber (2018). From mechanobiology to developmentally inspired engineering. Philos Trans R Soc Lond B Biol Sci.; 373(1759):20170323. | doi: 10.1098/rstb.2017.0323.
  [12]   Christine E. Harper, Christopher J. Hernandez (2020). Cell biomechanics and mechanobiology in bacteria: Challenges and opportunities. APL Bioengineering 4(2):021501. | doi: 10.1063/1.5135585.
    [13]   C. Tagliaferri, Y. Wittrant, Marie-Jeanne Davicco, S. Walrand, V. Coxam (2015). Muscle and bone, two interconnected tissues. Ageing Res Rev.; 21:55-70. | doi: 10.1016/j.arr.2015.03.002.
  [14]   N. Hodson, Daniel W. D. West, A. Philp, Nicholas A. Burd, Daniel R. Moore  (2019). Molecular regulation of human skeletal muscle protein synthesis in response to exercise and nutrients: a compass for overcoming age-related anabolic resistance. Am J Physiol Cell Physiol.; 317(6):C1061-C1078. | doi: 10.1152/ajpcell.00209.2019.
  [15]   Yun C. Long, U. Widegren, Juleen R. Zierath (2004). Exercise-induced mitogen-activated protein kinase signalling in skeletal muscle. Proc Nutr Soc.; 63(2):227-32. | doi: 10.1079/PNS2004346.
  [16]   Z. Gan, T. Fu, Daniel P. Kelly, Rick B. Vega (2018). Skeletal muscle mitochondrial remodeling in exercise and diseases. Cell Research 28 (Pt 1) | doi: 10.1038/s41422-018-0078-7.
  [17]   Luke A. Olsen, Justin X. Nicoll, Andrew C. Fry (2019). The skeletal muscle fiber: a mechanically sensitive cell. Eur J Appl Physiol.; 119(2):333-349. | doi: 10.1007/s00421-018-04061-x.
  [18]   Thomas J. Burkholder (2007). Mechanotransduction in skeletal muscle. Front Biosci.; 12:174-91. | doi: 10.2741/2057.
    [19]   N. Musi, H. Yu, Laurie J. Goodyear (2003). AMP-Activated Protein Kinase Regulation and Action in Skeletal Muscle during Exercise. Biochem Soc Trans.; 31(Pt 1):191-5. | doi: 10.1042/bst0310191.
  [20]   K. Sakamoto, Laurie J. Goodyear (2002). Invited Review: Intracellular Signaling in Contracting Skeletal Muscle. J Appl Physiol (1985).; 93(1):369-83. | doi: 10.1152/japplphysiol.00167.2002.
  [21]   Mark A. Tarnopolsky (2018). Myopathies Related to Glycogen Metabolism Disorders. Neurotherapeutics.; 15(4):915-927. | doi: 10.1007/s13311-018-00684-2.
  [22]   M. Baues, A. Dasgupta, J. Ehling, J. Prakash, P. Boor, F. Tacke, F. Kiessling, T. Lammers (2017). Fibrosis imaging: Current concepts and future directions. Adv Drug Deliv.; 1;121:9-26. | doi: 10.1016/j.addr.2017.10.013.
  [23]   Piero G. Pavan, A. Stecco, R. Stern, C. Stecco (2014). Painful connections: densification versus fibrosis of fascia. Curr Pain Headache Rep.; 18(8):441. | doi: 10.1007/s11916-014-0441-4.
  [24]   A. Cabassi, M. Miragoli (2017). Altered Mitochondrial Metabolism and Mechanosensation in the Failing Heart: Focus on Intracellular Calcium Signaling. Int J Mol Sci.; 18(7):1487. | doi: 10.3390/ijms18071487.
    [25]   P. Koprowski, A. Kielbasa, B. Kulawiak, A. Szewczyk (2017). Mechanosensitivity of Mitochondrial Potassium Channels. Biophysical Journal 112(3):406a | doi: 10.1016/j.bpj.2016.11.2196.
  [26]   Chun P. Lee, G. Maksaev, Gregory S. Jensen, Monika W. Murcha, Margaret E. Wilson, M. Fricker, R. Hell, Elizabeth S. Haswell, Harvey A. Millar, Lee J. Sweetlove (2016). MSL1 is a mechanosensitive ion channel that dissipates mitochondrial membrane potential and maintains redox homeostasis in mitochondria during abiotic stress. Plant J.; 88(5):809-825. | doi: 10.1111/tpj.13301.
    [27]   A. Walewska, B. Kulawiak, A. Szewczyk, P. Koprowski (2018). Mechanosensitivity of mitochondrial large-conductance calcium-activated potassium channels. Biochim Biophys Acta Bioenerg.; 1859(9):797-805. | doi: 10.1016/j.bbabio.2018.05.006.
  [28]   Ivan S. Chernoivanenko, Elena A. Matveeva, Vladimir I. Gelfand, Robert D. Goldman, Alexander A. Minin (2015). Mitochondrial Membrane Potential Is Regulated by Vimentin Intermediate Filaments. FASEB J.; 29(3):820-7. | doi: 10.1096/fj.14-259903.
  [29]   E. Bartolàk-Suki, J. Imsirovic, Y. Nishibori, R. Krishnan, B. Suki (2017). Regulation of Mitochondrial Structure and Dynamics by the Cytoskeleton and Mechanical Factors. Int J Mol Sci.; 18(8):1812. | doi: 10.3390/ijms18081812.
  [30]   C. Giorgi, D. De Stefani, A. Bononi, R. Rizzuto, P. Pinton (2009). Structural and Functional Link between the Mitochondrial Network and the Endoplasmic Reticulum. Int J Biochem Cell Biol.; 41(10):1817-27. | doi: 10.1016/j.biocel.2009.04.010.
    [31]   S. Marchi, S. Patergnani, P. Pinton (2014). The endoplasmic reticulum-mitochondria connection: one touch, multiple functions. Biochim Biophys Acta.; 1837(4):461-9. | doi: 10.1016/j.bbabio.2013.10.015.
    [32]   AACOM (2011). Glossary of osteopathic terminology. J Am Osteopath Assoc.
    [33]   Philip E. Greenman, L. DeStefano (2012). Principi di medicina manuale. Futura Publishing Society.
    [34]   A. Auberville, A. Aubin (2015). La motilité en ostéopathie. Nouveau concept basé sur l'embryologie. Elsevier Masson.
    [35]   Priscilla J. Barker, Christopher A. Briggs, G. Bogeski (2004). Tensile transmission across the lumbar fasciae in unembalmed cadavers: effects of tension to various muscular attachments. Spine (Phila Pa 1976).; 29(2):129-38. | doi: 10.1097/01.BRS.0000107005.62513.32.
    [36]   A. Vleeming, A. L. Pool-Goudzwaard, R. Stoeckart, J. P. van Wingerden, C. Snijders (1995). The posterior layer of the thoracolumbar fascia. Its function in load transfer from spine to legs. Spine (Phila Pa 1976).; 20(7):753-8.
  [37]   J. L. Brasseur (2012). The biceps tendons: From the top and from the bottom. J Ultrasound.; 15(1):29-38. | doi: 10.1016/j.jus.2011.11.002.
    [38]   A. Stecco, W. Gilliar, R. Hill, B. Fullerton, C. Stecco (2013). The anatomical and functional relation between gluteus maximus and fascia lata. J Bodyw Mov Ther.; 17(4):512-7. | doi: 10.1016/j.jbmt.2013.04.004.
  [39]   Janine E. Curcio, Matthew J. Grana, S. England, Paige M. Banyas, Benjamin D. Palmer, Arielle E. Placke, William A. Rieck Jr, Amber M. Eade (2017). Use of the Spencer Technique on Collegiate Baseball Players: Effect on Physical Performance and Self-Report Measures. J Am Osteopath Assoc.; 117(3):166-175 | doi: 10.7556/jaoa.2017.031.
    [40]   S. Küçüksen, H. Yilmaz A. Sallı, H. Ugurlu  (2013). Muscle energy technique versus corticosteroid injection for management of chronic lateral epicondylitis: randomized controlled trial with 1-year follow-up. Arch Phys Med Rehabil.; 94(11):2068-74 | doi: 10.1016/j.apmr.2013.05.022.
    [41]   M. Smith, G. Fryer (2008). A comparison of two muscle energy techniques for increasing flexibility of the hamstring muscle group. J Bodyw Mov Ther.; 12(4):312-7 | doi: 10.1016/j.jbmt.2008.06.011.
  [42]   C. Civitillo (2015). Effect of osteopathic manipulative treatment on sport related ankle sprain injuries: case report. Ita J Sports Reh Po; 2; 2; 232-241| doi: oaji.net/journal-archive-stats.html.
  [43]   Lynn F. Brumm, C. Janiski, Jennifer L. Balawender, A. Feinstein (2013). Preventive osteopathic manipulative treatment and stress fracture incidence among collegiate crosscountry athletes. J Am Osteopath Assoc.; 113(12):882-90 | doi: 10.7556/jaoa.2013.066.
  [44]   Robert N. Pedowitz (2005). Use of osteopathic manipulative treatment for iliotibial band friction syndrome. J Am Osteopath Assoc.; 105(12):563-7.
  [45]   T. Morthland, Nicholas S. Cote, J. Humphrey, D. Fulk (2010). Osteopathic diagnosis of an acetabular injury. J Am Osteopath Assoc.; 110(5):290-3.
    [46]   F. Kamali, E. Sinaei, S. Bahadorian (2017).  The immediate effect of talocrural joint manipulation on functional performance of 15-40 years old athletes with chronic ankle instability: A double-blind randomized clinical trial. J Bodyw Mov Ther.; 21(4):830-834. | doi: 10.1016/j.jbmt.2017.01.010.