Il sistema nervoso centrale (SNC) rappresenta il principale mediatore tra le informazioni esterne ed organiche, assolvendo l’obiettivo ultimo di generare motricità. [1]

Tale mediazione si verifica attraverso i recettori sensoriali, le cui fibre afferenti primarie si dirigono verso i gangli della radice dorsale, per poi raggiungere, mediante il loro assone/neurite, i centri superiori, al fine di trasdurre forme di energia provenienti dall’ambiente in energia elettrica o chimica. [1]

La classificazione del sistema sensoriale ha origine dalle ricerche di Sir Charles Sherrington, [2] neurofisiologo anglosassone che raggruppò le modalità dei sensi in:

  1. Telocettive: vista e udito;
  2. Propriocettive: posizione degli arti;
  3. Esterocettive: tatto, ivi inclusi temperatura e dolore;
  4. Chemocettive: olfatto e gusto;
  5. Interocettive: viscerali

Tuttavia, alla luce delle recenti scoperte nel campo dell’anatomia neuro-funzionale [3] e dell’embriologia, [4-5] il sistema sensoriale può essere diviso in:

  1. Telorecettivo;
  2. Esterocettivo/propriocettivo (sistema sensoriale A);
  3. Interocettivo/nocicettivo (sistema sensoriale B)

La scarsa correlazione clinica tra il sistema sensoriale A e i fenomeni nocicettivi, [6] essenzialmente riconducibile alla attività di integrazione assolta dai neuroni della lamina V del midollo spinale (wide-dynamic-range neurons), sembra suffragare l’ipotesi secondo cui la facilitazione spinale, da sempre considerata la base neurofisiologica sottostante la disfunzione somatica (DS) [7] ed altre condizioni mediche, [8] possa legarsi ad una condizione infiammatoria neurogenica a bassa soglia, [8] mantenuta nel tempo, determinata dalla secrezione antidromica di polipeptidi da parte delle fibre afferenti primarie di piccolo calibro [9] facenti parte del sistema sensoriale B.

L’esistenza di aree di innervazione sensoriale associate ad una comune radice nervosa favorisce il fenomeno della “convergenza”, estendendo il suddetto quadro algico anche in aree lontane dal sito originario della lesione, [10] con la possibilità di evocare riflessi viscero-somatici o dolore riferito, apprezzabili palpatoriamente attraverso la pratica clinica osteopatica. [11]

Recenti evidenze scientifiche [12-17] avvalorano l’ipotesi secondo cui l’interazione con i tessuti periferici, alla base del trattamento manipolativo osteopatico (TMO), sia mediata dalle stesse fibre meccanosensibili ( e C e) del “sistema interocettivo”, [18] che raccoglie segnali afferenti non soltanto le condizioni metaboliche viscerali, ma dei tessuti di tutto il corpo, proiettandoli ai centri omeostatici ed autonomi presenti nel midollo spinale (lamina I) e nel tronco encefalico (nucleo del tratto solitario - NTS), per poi integrarli nella corteccia insulare, ottimizzando le influenze del sistema nervoso autonomo (SNA) e immunitario sull’organismo. [3]

Nel dettaglio, il TMO induce una serie di eventi autonomi parasimpatici (mediati dal nervo vago) anti-infiammatori e anti-nocicettivi, [19-20] normalizzando lo squilibrio con il sistema nervoso simpatico [21-22] e impattando, verosimilmente, l’alterazione dei processi interocettivi che accomuna numerosi quadri clinici, fra cui il dolore cronico, [23] le dipendenze, [24] i disturbi post-traumatici da stress, [25] affettivi, [26] alimentari, [27-28] somatoformi [29-30] e dissociativi. [31-33]

In sintesi, il trattamento manipolativo osteopatico, in ambito neurologico ed immunitario, può:



BIBLIOGRAFIA

    [1]   Eric R. Kandel, James H. Schwartz, Thomas M. Jessell, Steven A. Siegelbaum, A. J. Hudspeth (2012). Principles of neural science. McGraw-Hill Education.
    [2]   Charles S. Sherrington (1906). The Integrative Action of the Nervous System. Cambridge: Cambridge University Press.
    [3]   A. D. (Bud) Craig (2002). How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci.; 3(8):655-66. | doi: 10.1038/nrn894.
    [4]   Jeffrey C. Woodbury, Amy M. Ritter, Richard H. Koerber. (2001). Central anatomy of individual rapidly adapting low-threshold mechanoreceptors innervating the “hairy” skin of newborn mice: early maturation of hair follicle afferents. J. Comp. Neurol. 436, 304–323. | doi: 10.1002/cne.1069.
    [5]   James C. Prechtl, Terry L. Powley (1990). The fiber composition of the abdominal vagus of the rat. Anat. Embryol. 181, 101–115. | doi: 10.1007/BF00198950.
  [6]   D. Matre, Lars-Arendt-Neilsen, S. Knardahl (2002). Effects of localization and intensity of experimental muscle pain on ankle joint proprioception. Eur J Pain.; 6(4):245-60. | doi: 10.1053/eujp.2002.0332.
  [7]   Irvin M. Korr (1947). The neural basis of the osteopathic lesion. J Am Osteopath Assoc.; 47(4):191-8.
    [8]   G. D’Alessandro, F. Cerritelli, P. Cortelli (2016). Sensitization and Interoception as Key Neurological Concepts in Osteopathy and Other Manual Medicines. Front Neurosci.; 10:100. | doi: 10.3389/fnins.2016.00100.
    [9]   John N. Howell, Frank H. Willard (2005). Nociception: New Understandings and Their Possible Relation to Somatic Dysfunction and Its Treatment. Ohio Research and Clinical Review. Volume 15.
    [10]   Jane E. Carreiro (2013). Un approccio osteopatico per i bambini. Futura Publishing Society.
    [11]   John M. Cox, S. Gorbis, Lorane M. Dick, Joseph C. Rogers, Felix J. Rogers (1983). Palpable musculoskeletal findings in coronary artery disease: results of a double-blind study. J Am Osteopath Assoc.; 82(11):832-6.
    [12]   J. Liljencrantz, I. Strigo, Dan-Mikael Ellingsen, Heidrun H. Krämer, Linda C. Lundblad, Saad S. Nagi, S. Leknes, H. Olausson (2017). Slow brushing reduces heat pain in humans. Eur J Pain.; 21(7):1173-1185. | doi: 10.1002/ejp.1018.
    [13]   K. Habig, A. Schänzer, W. Schirner, G. Lautenschläger, B. Dassinger, H. Olausson, F. Birklein, Elke R. Gizewski, Heidrun H. Krämer (2017). Low threshold unmyelinated mechanoafferents can modulate pain. BMC Neurol.; 17(1):184. | doi: 10.1186/s12883-017-0963-6.
    [14]   Susannah C. Walker, Paula D. Trotter, William T. Swaney, A. Marshall, Francis P. McGlone (2017). C-tactile afferents: Cutaneous mediators of oxytocin release during affiliative tactile interactions? Neuropeptides.; 64:27-38. | doi: 10.1016/j.npep.2017.01.001.
    [15]   L. Nummenmaa, L. Tuominen, R. Dunbar, J. Hirvonen, S. Manninen, E. Arponen, A. Machin, R. Hari, Iiro P. Jääskeläinen, M. Sams (2016). Social touch modulates endogenous μ-opioid system activity in humans. Neuroimage.; 138:242-247. | doi: 10.1016/j.neuroimage.2016.05.063.
    [16]   C. Triscoli, I. Croy, Susann Steudte-Schmiedgen, H. Olausson, U. Sailer (2017). Heart rate variability is enhanced by long-lasting pleasant touch at CT-optimized velocity. Biol Psychol.; 128:71-81. | doi: 10.1016/j.biopsycho.2017.07.007.
    [17]   A. Manzotti, F. Cerritelli, Jorge E. Esteves, G. Lista, E. Lombardi, S. La Rocca, A. Gallace, Francis P. McGlone, Susannah C. Walker (2019). Dynamic touch reduces physiological arousal in preterm infants: A role for c-tactile afferents? Dev Cogn Neurosci.; 39:100703. | doi: 10.1016/j.dcn.2019.100703.
    [18]   F. McGlone, F. Cerritelli, S. Walker, J. Esteves (2017). The role of gentle touch in perinatal osteopathic manual therapy. Neurosci Biobehav Rev.; 72:1-9. | doi: 10.1016/j.neubiorev.2016.11.009.
  [19]   John C. Licciardone, Cathleen M. Kearns, Lisa M. Hodge, Michael V.W. Bergamini (2012). Associations of cytokine concentrations with key osteopathic lesions and clinical outcomes in patients with nonspecific chronic low back pain: results from the OSTEOPATHIC Trial. J Am Osteopath Assoc.; 112(9):596-605. | doi: 10.7556/jaoa.2012.112.9.596.
  [20]   Brian F. Degenhardt, Jane C. Johnson, C. Fossum, Chad T. Andicochea, Melissa K. Stuart (2007). Changes in Cytokines, Sensory Tests, and Self-reported Pain Levels After Manual Treatment of Low Back Pain. Clin Spine Surg.; 30(6): E690-E701. | doi: 10.1097/BSD.0000000000000231.
  [21]   Charles E. Henley, D. Ivins, M. Mills, Frances K. Wen, Bruce A. Benjamin (2008). Osteopathic manipulative treatment and its relationship to autonomic nervous system activity as demonstrated by heart rate variability: a repeated measures study. Osteopath Med Prim Care.; 2:7. | doi: 10.1186/1750-4732-2-7.
  [22]   N. Ruffini, G. D’Alessandro, N. Mariani, A. Pollastrelli, L. Cardinali, F. Cerritelli (2015). Variations of high frequency parameter of heart rate variability following osteopathic manipulative treatment in healthy subjects compared to control group and sham therapy: randomized controlled trial. Front Neurosci.; 9:272. | doi: 10.3389/fnins.2015.00272.
  [23]   Anton J. M. Schmidt, Riet E. H. Gierlings, Madelon L. Peters (1989). Environmental and interoceptive influences on chronic low back pain behavior. Pain 38, 137–143. | doi: 10.1016/0304-3959(89)90231-5.
  [24]   Nasir H. Naqvi, A. Bechara (2010). The insula and drug addiction: an interoceptive view of pleasure, urges, and decisionmaking. Brain Struct. Funct. 214(5-6):435–450. | doi: 10.1007/s00429-010-0268-7.
    [25]   J. Wald, S. Taylor (2008). Responses to interoceptive exposure in people with post traumatic stress disorder (PTSD): a preliminary analysis of induced anxiety reactions and trauma memories and their relationship to anxiety sensitivity and PTSD symptom severity. Cogn. Behav. Ther. 37(2):90–100. | doi: 10.1080/16506070801969054.
  [26]   Martin P. Paulus, Murray B. Stein (2010). Interoception in anxiety and depression. Brain Struct. Funct. 214(5-6):451–463. | doi: 10.1007/s00429-010-0258-9.
    [27]   Beate M. Herbert, O. Pollatos (2014). Attenuated interoceptive sensitivity in overweight and obese individuals. Eat. Behav. 15(3):445–448. | doi: 10.1016/j.eatbeh.2014.06.002.
    [28]   O. Pollatos, A. L. Kurz, J. Albrecht, T. Schreder, Anna M. Kleemann, V. Schopf, R. Kopietz, M. Wiesmann, R. Schandry (2008). Reduced perception of bodily signals in anorexia nervosa. Eat. Behav. 9, 381–388. | doi: 10.1016/j.eatbeh.2008.02.001.
    [29]   L. Mirams, E. Poliakoff, Richard J. Brown, Donna M. Lloyd (2012). Interoceptive and exteroceptive attention have opposite effects on subsequent somatosensory perceptual decision making. Q. J. Exp. Psychol. (Hove). 65, 926–938. | doi: 10.1080/17470218.2011.636823.
  [30]   M. Schaefer, B. Egloff, M. Witthoft (2012). Is interoceptive awareness really altered in somatoform disorders? Testing competing theories with two paradigms of heartbeat perception. J. Abnorm. Psychol. 121(3):719–724. | doi: 10.1037/a0028509.
  [31]   Benjamin L. Hankin (2012). Future directions in vulnerability to depression among youth: integrating risk factors and processes across multiple levels of analysis. J. Clin. Child Adolesc. Psychol. 41, 695–718. | doi: 10.1080/15374416.2012.711708.
  [32]   M. Michal, B. Reuchlein, J. Adler, I. Reiner, Manfred E. Beutel, C. Vögele, H. Schächinger, A. Schulz (2014). Striking discrepancy of anomalous body experiences with normal interoceptive accuracy in depersonalization-derealization disorder. PLoS One.; 9(2) e89823. | doi: 10.1371/journal.pone.0089823.
  [33]   L. Sedeno, B. Couto, M. Melloni, A. Canales-Johnson, A. Yoris, S. Baez, S. Esteves, M. Velasquez, P. Battfeld, M. Sigman, R. Kichic, D. Chialvo, F. Manes, Tristan A. Bekinschtein, A. Ibanez (2014). How do you feel when you can’t feel your body? Interoception, functional connectivity and emotional processing in depersonalization- derealization disorder. PLoS ONE 9: e98769. | doi: 10.1371/journal.pone.0098769.
  [34]   A. Accorsi, C. Lucci, L. Di Mattia, C. Granchelli, G. Barlafante, F. Fini, G. Pizzolorusso, F. Cerritelli, M. Pincherle (2014). Effect of osteopathic manipulative therapy in the attentive performance of Children with attention-deficit/hyperactivity Disorder. J Am Osteopath Assoc.; 114(5):374-81. | doi: 10.7556/jaoa.2014.074.
  [35]   F. Cerritelli, P. Chiacchiaretta, F. Gambi, Mauro G. Perrucci, G. Barassi, C. Visciano, Rosa G. Bellomo, R. Saggini, A. Ferretti (2020). Effect of manual approaches with osteopathic modality on brain correlates of interoception: an fMRI study. Scientific Reports 10(1) | doi: 10.1038/s41598-020-60253-6.
  [36]   F. Tamburella, F. Piras, F. Piras, B. Spanò, M. Tramontano, T. Gili (2019). Cerebral Perfusion Changes After Osteopathic Manipulative Treatment: A Randomized Manual Placebo-Controlled Trial. Front Physiol.; 10:403. | doi: 10.3389/fphys.2019.00403.
  [37]   M. Tramontano, F. Cerritelli, F. Piras, B. Spanò, F. Tamburella, F. Piras, C. Caltagirone, T. Gili (2020). Brain Connectivity Changes after Osteopathic Manipulative Treatment: A Randomized Manual Placebo-Controlled Trial. Brain Sci.; 10(12):969. | doi: 10.3390/brainsci10120969.
  [38]   N. Whiteley, H. King, Tuazon A. Cabrera, C. Pluim, M. Nakhla, P. Mills, D. Schiehser (2019). B-25 Osteopathic Manipulative Treatment Improves Non-Motor Symptoms in Parkinson’s Disease: A Preliminary Study. Archives of Clinical Neuropsychology 34(6):971-971. | doi: 10.1093/arclin/acz034.108.